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Abstract

Linear regression examines the relationship between one or more independent (predictor)

variables and a dependent variable. By using the formula Sr = a + bix1 + b2x2 + e, regression

determines the weights needed to minimize the error term (e) for a given set of predictors. With

one predictor variable, the relationship between the predictor and the dependent variable is

linear. With two predictors, this relationship becomes planar, and with three or more predictors,

this relationship becomes hyperplanar. By examining 3-dimensional representations of the data,

a researcher can gain greater insight into the data. The recent report of the APA Task Force on

Statistical Inference, published in the August, 1999 issue of the American Psychologist, emphasized

the value and importance of using graphics to understand and communicate data dynamics.
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Three-dimensional Modeling in Linear Regression

The influence of one or more factors on the outcome of a specific event or circumstance

is an area of interest to many researchers. Extent of these influences can be investigated using

linear regression. Linear regression can be used to explain the results of a study. An example

would be if a committee responsible for the selection of incoming medical students tried to

determine the influence of the previous grades, interview, and scores on the medical college

aptitude test (MCAT) on the overall ranking of the candidates. Linear regression can also be

used to predict. For example, if the same committee were interested in determining the how the

ranking of the candidates would predict the performance of the incoming class in the first year of

medical school, they could access the information from the previous class, along with their

grades in their first year of medical school. By using regression, the committee could predict

from the information from the previous class how the incoming class should perform.

Geneticist Francis Galton noted that the heights of sons had a tendency to regress toward

the mean height of the population as compared to the height of their fathers. Sons of a tall man

are more likely to be shorter, or closer to the mean height, while sons of a short man are more

likely to be taller. Galton developed regression analysis in order to study this effect (Galton,

1889). Linear regression produces weights that are used on the predictor variables in order to

produce optimal values for the dependent or outcome variable, minimizing error. The weight or

regression coefficient is determined by dividing the sum of squares of the cross product by the

sum of squares of the predictor variable (Hinkle, Wiersma, & Jurs, 1998: see also Christensen,

1996; Hocking, 1985). The formula used for simple linear regression is 57= a + bx + e, where 5/is

the predicted outcome variable, "e" is the error term or y -y, "a" is the y-intercept, and "b" is the

regression coefficient (See Figure 1). This formula describes a regression line that has the
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smallest sum of squares for error (SSE). Both Sr and e are latent or synthetic variables, in that

they are created as a result of regression, and may not bear any resemblance to the actual data.

This formula can be converted into standard score form by setting "a" = 0 and b =13(sy/sx). In

standard score form, 13 is the regression coefficient or beta coefficient. Values for 13 can range

from 1 to 1. With two predictor variables, the formula in raw score form is Si = a + bixi + b2x2 +

e, and is zy =13izi +132z2 in standard score form. Instead of being represented as a line, these

data can be represented as a plane. Berk (1998) argued that plots of regression of two or more

predictors in two dimensions do not provide comprehensive insight into the data set. In fact,

Berk points out that three-dimensional plots can be used to represent multi-dimensional data, by

"stacking" or layering additional variables along the x2 axis.

In multiple regression, the "fit" of the plane to the data is often described by the multiple

correlation coefficient, R, which can be determined using p. The multiple correlation coefficient

is a Pearson product-moment correlation between the outcome variable, y, and the predicted

outcome variable, y. In the case of one predictor variable, R is equal to rxy. In case of two or

more uncorrelated predictor variables, R is equal to the sum of rxiy, rx2y, etc. By taking the square

root of the sum of the products of each 13 and its corresponding correlation between xi and y, R

can be calculated (Hinkle, Wiersma & Jurs, 1998).

Another valuable tool for examining the relationship between predictor variables and the

dependent variable are structure coefficients. These are zero-order correlations between the

predictor variables and the synthetic variable divided by R (Pedhazur, 1982). Mathematically,

this partitions the influence of each predictor variable on 5, as seen in the equation rs = rxy/R. As

explained by Thompson and Borrello (1985), data may be misinterpreted if structure coefficients

are not examined. Additionally, Thompson points out that examination of structure coefficients
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can provide information about the collinearity of the predictor variables and the presence of

suppressor variables (Thompson, 1992).

This paper has two purposes: (a) to represent linear regression in a three-dimensional

form to provide visual insight into the influences of various factors on Si, and (b) to investigate

the value of including structure coefficients in the graphs. A data set found in Table 1 will be

used periodically to generate the graphics. When values for specific coefficients are altered

artificially in order to examine their effects, the data set will not be used and a dot plot will not

be included in the graph. Graphs will be limited to two independent (predictor) variables and

one dependent (outcome) variable. Graphs will not be standardized for better visualization of the

data away from the x-, y-, and z-axes. More than two predictors and the value of

multidimensional graphs will be investigated in a another study. Analysis was performed using

SYSTAT 8.0. Graphs were generated by SigmaPlot 5.0. .

The use of computer graphics to explore and understand data is consistent with the recently-

released report of the APA Task Force on Statistical Inference (Wilkinson & The APA Task Force

on Statistical Inference, 1999). As the Task Force emphasized,

As soon as you have collected your data, before you compute any statistics,

look at your data. Data screening is not data snooping. It is not an opportunity

to discard data or change values to favor your hypotheses. However, if you

assess hypotheses without examining your data, you risk publishing

nonsense.... Graphical inspection of data offers an excellent possibility for

detecting serious compromises to data integrity. The reason is simple:

Graphics broadcast; statistics narrowcast. (p. 597, emphasis in original)
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Certainly such admonitions are not new (Tukey, 1977). And several resources are available

for researchers seeking guidance on the use of graphics to explore and understand data (cf.

Chambers, Cleveland, Kleiner & Tukey, 1983; Cleveland, 1995; Wilkinson, 1999). But

microcomputer software has been improved markedly in recent years as regards graphic

capabilities, and so now these applications are readily available to applied researchers.

Linear Regression Using Two Predictor Variables

General Graphic Presentation

Figure 2 attempts to clarify the direction of the influence of each predictor on the

outcome by holding one predictor constant while altering the other. Initially, b1 is sequentially

changed from 1 to 1, while b2 is held at 0.5. In Figure 3, b1 is held at 0.5 while b2 is

sequentially changed from 1 to 1. The scatterplot and values for the y-axis have been removed

for the sake of clarity. Note in both examples, the plane rotates on the mean for x1 (20) and x2

(20), depending upon whether b1 or b2 is being altered. Additionally, at near-zero values for b1

and b2, the plane settles near the mean for y (20). This seems intuitive in that if x1 and/or x2 are

useless predictors of y, then the best predictor for y is the mean of y (Thompson, 1992).

From this perspective, the first predictor variable changes the slope of the plane from left

to right. Positive values for b1 will result in a rise in the plane from left to right, while negative

values result in left-to-right declination. In this perspective, the second predictor variable

influences the slope from the front to the back. Positive values for b2 will result in a rise in the

plane from front to back, while negative values result in a declination of the plane in the same

direction. Rotating the image in any direction can easily confuse this, as seen in Figure 4. In this

figure, the regression plot is rotated 45° in each sequential frame. It is necessary to note the

direction of the scale on each labeled axis when looking at graphics in three dimensions.
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Using Uncorrelated Predictors

Figure 5 demonstrates the relationship between two predictors and one outcome using the

equation y = 23.248 + -0.379x1+ 0.217x2 + e as derived from using Predictor 1 and Predictor 2 as

seen in Figure 4. Table 2 shows the Pearson correlation matrix for all variables, while Table 3

contains the regression data for Predictor 1 and Predictor 2 versus Outcome. The value for b1 is

the same as in Figure 1, and the addition of the second set of values for Predictor 2 demonstrates

the relationship between Predictor 2 and the outcome independent of the influence of Predictor 1

because x1 is uncorrelated with x2.

In this case, R2 is equal to the sum of r xly 2 and r x2y 2. Looking at the regression sums of

squares (SOSR) of this data, for Predictor 1 and the outcome variable, the SOSR is equal to 2.736.

The SOSR for Predictor 2 is 0.895. Totaling these two values results in the same SOSR obtained

by regressing Predictor 1 and Predictor 2 against the outcome variable. Because the two

predictor variables are uncorrelated, they do not share any of the sums of squares for Sr.

Therefore, any contribution of individual predictors toward explaining y is additive.

Using Correlated Predictors

In the previous data set, predictor variables were uncorrelated. However, correlation

between predictor variables influences the graphic. Using Predictor 1 and Predictor 4, which has

approximately the same correlation with y (-0.379 for x1 and 0.290 for x2), the regression

equation becomes 5/ = 22.936 + -0.314x1 + 0.167x2 + e with the correlation of x1 with x2 = -0.393

as seen in Figure 6. Note that the declination of the plane on the x1 axis is lessened when the

predictors are correlated. As each predictor variable only has a limited sums of squares that it

can use to explain 5/, any sharing of sums of squares through correlation with other predictor

variables will limit its influence on y. This is seen using the same comparison of SOSR as losted
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in Table 4. The SOSR for predictor 1 is 2.736 and SOSR for Predictor 4 is 1.601. However, when

Predictors 1 and 4 are regressed together with y, the SOSR is 3.184, indicating that some of the

sums of squares explained by the predictors overlap. The correlation between Predictor 1 and

Predictor 4 is 0.393.

Regressing Predictor 3 and Predictor 5 with y provides insight into to the effects of

positively correlated independent variables (r = 0.421, Figure 7). For Predictor 3 regressed with

y, the SOSR is 4.413, while the SOSR for Predictor 5 with y is 3.666 (from Table 5). The SOSR

for both predictors with y is 5.703. Regardless of the sign of the correlation coefficient,

collinearity reduces the usefulness of an individual predictor variable when using multiple

predictors in most cases. Figure 8 demonstrates is an overlay of Figure 7 with the collinearity of

the two predictors removed.

Value of Structural Equations

Because of the influence of collinearity of predictor variables on linear regression, proper

interpretation of data requires more information (Thompson, 1992; Thompson & Borrello, 1985).

In Figure 9, Predictor 4 is regressed with Predictor 6 against the outcome resulting in b1 = 0.664,

b2 = 0.592 and R2 = 0.296 (adjusted R2 = 0.213). The Pearson correlation coefficients for these

data sets are rp4,y = 0.290, rp6,y = 0.174, and rp4,p6 = -0.630. This is contradictory to the previous

discussion in that the resulting R2 increases when these two correlated predictors are used. The

SOSR for Predictor 4 by itself is 1.601, while the SOSR for Predictor 6 is 0.576. The SOSR

regressing both predictors is 5.619 as seen in Table 6. Figure 10 show an overlay of Figure 9

with the red grid representing the weights for Predictors 4 and 6 with the correlation removed.

This is due to the presence of a suppressor variable. By definition, a suppressor variable is a

variable that increases R2 with its addition and is not or weakly correlated with the dependent
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Regression in 3D 9

variable Thompson, 1992). In this case, Predictor 6 is modestly correlated with y (r = 0.174)

while Predictor 4 is more correlated (r = 0.290). By examining the structure coefficients (rs) of

these two variables, it can be determined which explains the most of Si. The structure

coefficients can be calculated by dividing rxj by R. The correlation between Predictor 4 and 5,

(rp,i) is 0.534, while the correlation between Predictor 6 and 57 (rp6 - ) is 0.320. The structure

coefficient for Predictor 4 (rsp4) is 0.9816, while rsp6 is 0.5882. Predictor 4 occupies 98% of the

sums of squares explained and Predictor 6 occupies 59%. See Figure 11 for the addition of the rs

for this data set. Another method by which the presence of suppressor variable can be

determined is by regressing the predictors with and without the suspected suppressor.

Regressing Predictors 4 and 5 with and without Predictor 6 yields an R without Predictor 6 of

0.491, and an R with Predictor 6 of 0.564 as seen in Table 7. The r for Predictor 4 increased

from 0.223 with out Predictor 6 to 0.540 with Predictor 6. The correlation coefficient for

Predictor 5 decreased from 0.402 to 0.191 when Predictor 6 was added. All three predictors are

correlated, as seen in Table 1.

Linear regression when used as a tool for prediction or explanation is usually indicative

of extreme interest in the data. However, b weights, 0 weights and correlation coefficients offer

only incomplete insight into the nature of the predictors. Viewing the data set graphically and

including the "best fit" plane allows the investigator to see how much collinearity is affecting the

data. In general, collinearity reduces the slope of the plane, due to sharing of the sums of squares

by the predictor variables. However, when a suppressor variable is present, collinearity increases

the slope of the plane. Normally, this would not be apparent unless the investigator chose to

overlay the regression graph with a graph of the correlation coefficients. By adding the structure

coefficients, the suppressor variable can be identified as it should be uncorrelated with the

10
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outcome variable, but be credited with having a positive effect on the prediction validity of the

model. Three-dimensional representation of data sets helps further elucidate the data by helping

the researcher visualize the data as well as the values of the various coefficients.

i 1
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Figure Caption

Figure 1. Simple linear regression with b = -0.379.

Figure 2. Linear regression with two predictor variables varying b1 and holding b2 constant at

0.5. In graph A, b1 = -1.0 and b2 = 0.5. In graph B, b1 = -0.75 and b2 = 0.5. In graph C, b1 = -0.5

and b2 = 0.5. In graph D, b1 = -0.25 and b2 = 0.5. In graph E, b1= 0.0 and b2 = 0.5. In graph F,

bi =0.25 and b2 = 0.5. In graph G, bi =0.5 and b2 = 0.5. In graph H, bi =0.75 and b2 = 0.5. In

graph I, bi = 1.0 and b2 = 0.5.

Figure 3. Linear regression with two predictor variables holding b1 constant at 0.5 and varying

b2. In graph A, b1 =0.5 and b2 = -1.0. In graph B, bi =0.5 and b2 = -0.75. In graph C, bi = 0.5

and b2 = -0.5. In graph D, b1 = 0.5 and b2 = -0.25. In graph E, b1 = 0.5 and b2 = 0.0. In graph F,

bi =0.5 and b2 = 0.25. In graph G, bi =0.5 and b2 = 0.5. In graph H, bi =0.5 and b2 = 0.75. In

graph I, bi =0.5 and b2 = 1.0.

Figure 4. Linear regression with two predictor variables with sequential 45° rotation, starting at

0° and ending at 315°.

Figure 5. Linear regression with two predictor variables with b1 = -0.379 and b2 = 0.217.

Figure 6. Linear regression with two predictor variables with b1 = -0.314 and b2 = 0.167 (top).

Side-by-side comparison of plots of previous predictors (bottom right) and current predictors

(bottom left).

Figure 7. Linear regression with two positively correlated predictors with b1 = 0.361 and b2 =

0.287.

Figure 8. Linear regression with two positively correlated predictors with b1 = 0.361 and b2 =

0.287. Red grid represents linear regression with two positively correlated predictors with b1 =

0.482 and b2 = 0.439.
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Figure 9. Linear regression with b1 = 0.664 and b2 = 0.592 as derived from predictor variables 4

and 6.

Figure 10. Linear regression with b1 = 0.664 and b2 = 0.592 as derived from predictor variables 4

and 6. Red grid represents overlay of predictor variables 4 and 6 without collinearity, b1 = 0.290

and b2 = 0.174.

Figure 11. Linear regression with b1 = 0.664 and b2 = 0.592 as derived from predictor variables 4

and 6. Red grid represents overlay of predictor variables 4 and 6 without collinearity, b1 = 0.290

and b2 = 0.174. Blue grid represents an overlay of the structure coefficient for Predictor 4 and

Predictor 6, with b1 = 0.9816 and b2 = 05882.



22

21 -

20 -

19 -

18 -

17 -

16

Regression in 3D 15

Simple Linear Regression

$

18 19 20 21 22

Predictor

1 6



Regression in 3D 16

Two Predictors

Predictor
1

17



Regression in 3D 17

Allirialir 4111"1"4111,4111111, 19
18

22iirii rte 21 q,

16 AIMPAIMPr 411111PAIMPV41112111.
18

PrOaktor

18



19

Regression in 3D 18

¶8

C Predictor
10

22

21 ry

20 ./
19 C5'.

10

F 18



22

21

22

21

20

a)
E

Regression in 3D 19

oo 19
=0

18

17

16

Predictor
1

20

18

17

18

Predictor
18

23
22 ,

19 .9

18

23

2122 I''R
20 T

19 CZ-
s)

20

Predictor 1



16

19 04
20

21

20

Predictor

22

22

21

19 20 21

Predictor 2

22

21

Regression in 3D 20

22

Predictor 2



N
Eo
4-,

0

Regression in 3D 21

Positively Correlated Predictors

Predictor 3



Regression in 3D 22

Positively Correlated Predictors

_.01011
/1;0' ' 000

)10......0...:^,:VIIV1.050,";:rir

1,*4.A.1.10/1,401."
0-9,0L1,4

olorpr

Predictor 3



Regression in 3D 23

Linear Regression with Two Correlated Variables
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Table 1

Data Set Used for Linear Regression

Outcome Predictor 1 Predictor 2 Predictor 3 Predictor 4 Predictor 5 Predictor 6
19.553 21.61 19.338 19.162 19.718 19.488 20.24
20.094 20.537 21.545 20.576 19.64 19.925 21.286
20.799 19.732 19.89 20.386 19.662 19.889 20.641
20.778 19.195 18.786 19.646 20.297 21.399 21.116
20.296 18.927 19.338 20.579 19.924 19.732 19.904
21.42 18.927 20.662 20.598 20.704 20.303 20.223
19.582 19.195 21.214 18.595 19.35 18.549 19.095
20.345 19.732 20.11 19.087 21.979 19.566 18.004
19.988 20.537 18.455 20.386 18.923 19.148 21.652
20.86 21.61 20.662 20.806 20.068 19.481 19.781
19.753 18.927 20.662 19.768 21.384 19.325 18.4
20.491 19.195 21.214 21.681 19.026 20.357 19.841
18.415 19.732 20.11 18.873 19.657 20.294 19.378
19.474 20.537 18.455 21.746 18.945 21.679 20.997
19.506 21.61 20.662 19.755 20.467 20.51 20.224
17.166 21.61 19.338 18.393 19.058 17.365 19.21
20.48 20.537 21.545 20.857 18.217 20.556 21.488
21.158 19.732 19.89 20.76 20.537 20.344 19.275
19.067 19.195 18.786 19.834 20.541 21.022 20.03
20.778 18.927 19.338 18.512 21.904 21.07 19.216
Avg 20 20 20 20 20 20 20
sd 1 1 1 1 1 1 1

2 7



Table 2

Pearson correlation matrix

Outcome Predictor
1

Predictor
2

Predictor
3

Predictor
4

Predictor
5

Predictor
6

Outcome 1.000
Predictor 1 -0.379 1.000
Predictor 2 0.217 0.000 1.000
Predictor 3 0.482 -0.005 0.125 1.000
Predictor 4 0.290 -0.393 -0.080 -0.376 1.000
Predictor 5 0.439 -0.312 -0.186 0.421 0.167 1.000
Predictor 6 0.174 0.269 -0.144 0.509 -0.630 0.354 1.000

28



Table 3

Regression of Predictor 1 and Predictor 2

Dep Var: Outcome N: 20 Multiple R: 0.437 Squared multiple R: 0.191

Adjusted squared multiple R: 0.096 Standard error of estimate: 0.951

Effect Coefficient Std Error Std Coef Tolerance t P(2 Tail)

CONSTANT 23.248 6.174 0.000 3.765 0.002
Predictor 1 -0.379 0.218 -0.379 1.000 -1.739 0.100

Predictor 2 0.217 0.218 0.217 1.000 0.995 0.334

Analysis of Variance

Source Sum-of-Squares df Mean-Square F-ratio

Regression 3.631 2 1.815 2.007 0.165
Residual 15.373 17 0.904

2 9



Table 4

Regression of Predictor 1 and Predictor 4

Dep Var: Outcome N: 20 Multiple R: 0.409 Squared multiple R: 0.168

Adjusted squared multiple R: 0.070 Standard error of estimate: 0.965

Effect Coefficient Std Error Std Coef Tolerance t P(2 Tail)

CONSTANT 22.936 80.35 0.000 2.854 0.011
Predictor 1 -0.314 0.241 -0.314 0.846 -1.304 0.210
Predictor 4 0.167 0.241 0.167 0.845 0.694 0.497

Analysis of Variance

Source Sum -of- Squares df Mean-Square F-ratio P

Regression 3.184 2 1.592 1.711 0.210
Residual 15.820 17 0.931
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Table 5

Regression of Predictor 3 and Predictor 5

Dep Var: Outcome N: 20 Multiple R: 0.548 Squared multiple R: 0.300

Adjusted squared multiple R: 0.218 Standard error of estimate: 0.885

Effect Coefficient Std Error Std Coef Tolerance t P(2 Tail)

CONSTANT 7.037 4.819 0.000 1.460 0.162
Predictor 3 0.361 0.224 0.361 0.823 1.613 0.125
Predictor 5 0.287 0.224 0.287 0.823 1.284 0.216

Analysis of Variance

Source Sum-of-Squares df Mean-Square F-ratio P

Regression 5.703 2 2.851 3.644 0.048
Residual 13.301 17 0.782
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Table 6

Regression of Predictor 4 and Predictor 6

Dep Var: Outcome N: 20 Multiple R: 0.544 Squared multiple R: 0.296

Adjusted squared multiple R: 0.213 Standard error of estimate: 0.887

Effect Coefficient Std Error Std Coef Tolerance t P(2 Tail)

CONSTANT -5.114 9.470 0.000 -0.540 0.596
Predictor 4 0.664 0.262 0.663 0.603 2.531 0.022
Predictor 6 0.592 0.262 0.592 0.603 2.259 0.037

Analysis of Variance

Source Sum-of-Squares df Mean-Square F-ratio P

Regression 5.619 2 2.809 3.568 0.051
Residual 13.385 17 0.787



Table 7

Regression of Predictor 4, Predictor 5 and Predictor 6

Dep Var: Outcome N: 20 Multiple R: 0.564 Squared multiple R: 0.318

Adjusted squared multiple R: 0.190 Standard error of estimate: 0.900

Effect Coefficient Std Error Std Coef Tolerance t P(2 Tail)

CONSTANT -3.552 9.840 0.000 -0.361 0.723
Predictor 4 0.540 0.315 0.540 0.429 1.713 0.106
Predictor 5 0.191 0.262 0.191 0.622 0.729 0.477
Predictor 6 0.447 0.332 0.447 0.386 1.344 0.198

Analysis of Variance

Source Sum-of-Squares df Mean-Square F-ratio

Regression 6.049 3 2.016 2.490 0.097
Residual 12.955 16 0.810
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